Lower Passaic River
Sediment Removal Project

VI International Seminar on Remediation and Redevelopment of Contaminated Sites – October 27-28, 2008
Presented by Eugene Peck, PG, LEED-AP, ARCADIS, USA
Regional View

Passaic River
Lower Passaic River Sediment Removal Project

Presentation Outline

• Project Background
• Agreement with the US Environmental Protection Agency (USEPA)
• Existing Conditions
• Anticipated Scopes of Work
• Projected Schedule
Site Background

- Originally a tidal marsh
- **Mid-1940’s to 1977**: production of DDT and phenoxy herbicides
- **1983**: USEPA site samples showed high dioxin levels and site control was given to the State of New Jersey Department of Environmental Protection (NJDEP)
- **2002**: Upland site remediated by a cap, retaining floodwall and groundwater treatment
- **June 23, 2008**: USEPA signed Administrative Order on Consent (AOC) signed
- Overall goal to reduce inventory of dioxins in Passaic River by removing highest concentrations of 2,3,7,8-TCDD
AOC Requirements

- **Remove 153,600 m³** of Passaic River sediment adjacent to OU-1 (i.e. upland portion) of the Diamond Alkali Superfund Site

- Work to be conducted in two phases
 - **Phase I:** 30,600 m³ to be sent for treatment/disposal
 - **Phase II:** 123,000 m³ to be disposed in new Confined Disposal Facility (CDF)
Other Important AOC Requirements

- Removal depth of 3.7 meters below sediment surface (Phase I and Phase II)
- In-River work to be conducted within sheet pile enclosure (Phase I and Phase II)
- 30-month schedule (Phase I)
 - Subject to extension based upon certain occurrences
Regulatory Process

- USEPA defines project as a Non-Time-Critical Removal Action (NTCRA)
- Engineering Evaluation /Cost Analysis
 - Feasibility Study
 - Risk Assessment
 - Cost Analysis
 - Public Review
- Removal Design
- Construction
- Identical but separate process for each phase
Removal Areas

PHASE I
- (1 hectare)

PHASE II
- (2.5 hectares)
- (1.2 hectares)

Legend:
- Orange: Phase I Work Area
- Yellow: Phase II Work Area
- Property Boundary

Graphic Scale:
- 0 500 1,000 Feet

Arcadis
Existing Conditions

• Characteristics of removal area and vicinity
 – Highly industrial
 – Active navigation channel
 – Numerous shoreline structures
 – Debris likely
• Generally fine-grained, highly organic sediment
• Tidal Velocities ~ 0.9 meter per second
• Tidal Fluctuations ~ 1.9 meters
Existing Conditions Phase I
Contaminant Concentrations

• 2,3,7,8-TCDD average: 0.244 ppm (5.3 ppm max.)

• Mercury average: 7.78 ppm (20.9 ppm max.)

• Total PCBs average: 1,370 ppb, (1,550 ppb max.)
Phase I Technology Classes

- Containment and shoreline stabilization
- Sediment removal
- Sediment processing
- Water treatment and discharge
- Off-site transport of sediment
- Off-site sediment treatment and disposal
- Backfilling
Containment and Shoreline Stabilization
Process Options

- Sheet pile enclosure
 - Remove in the dry
 - Remove in the wet
Sediment Removal
Process Options: Mechanical

- Clamshell
- Mechanical Excavator
Sediment Removal
Process Options: Hydraulic

• Horizontal Auger
• Cutterhead
Sediment Removal
Process Options: Other

- High Solids Pump
- Removal within a caisson
Sediment Processing
Process Options: Solids Separation

- Grizzly
- Hydrocyclone

http://www.pollutionengineering.com/Articles/Cases/ok/5183d7de8f88010VgnVCM100000f932a8cd0
http://www.pollutionengineering.com/Articles/Casebook/5183d7de8f88010VgnVCM100000f932a8cd0
http://www.pollutionengineering.com/Articles/Casebook/5183d7de8f88010VgnVCM100000f932a8cd0
Sediment Processing
Process Options: Sediment Dewatering

- Geotextile Tubes
- Mechanical
- Gravity
Sediment Processing
Additional Process Options

- Oversize and Debris Handling

- ¾ Inch Material
- + ¾ Inch Material
- Coarse Material Stock Piles
Water Treatment and Discharge
Process Options

- Discharge to Public Water Treatment Facility (via sewer system)
- On-Site treatment / Discharge to Passaic
 - Sand Filter
 - Granular Activated Carbon
Off-Site Transport of Sediment
Process Options

• Transport of sealed water tight containers
 – Truck
 – Rail
 – Barge
Off-Site Sediment Treatment and Disposal Process Options

- Corrective Action Management Unit
- Landfill
- Incineration + Landfill

NOTE:
Any combination of modes of transport could be used.
Sediment Processing
Process Options: Segregation

- **In-situ**
 - Some sediments sent directly to incinerator (high cost)

- **Ex-Situ**
 - Sediments not sent directly to incinerator are further analyzed
 - If treatment required, sent to incinerator; otherwise sent to landfill (low cost)

- Contaminant and volume reduction additives
Backfilling
Process Options

• Use Conventional Placement equipment
• Look to ultimately restore surface

• Must consider:
 – Sediment geotechnical and hydrogeological properties
 – River hydrodynamics
 – Habitat restoration
 – Phase II Activities and schedule
Example
Removal Alternative Schematic

Transport

Disposal

NOTE: Any combination of modes of transport could be used.
Identification of Removal Action
Alternatives
Four Alternatives Were Developed

- **Alternative A**
 - Hydraulic removal with geotextile tube sediment processing

- **Alternative B**
 - Hydraulic removal with mechanical sediment processing

- **Alternative C**
 - Mechanical removal with mechanical sediment processing

- **Alternative D**
 - High-solids pump removal with mechanical processing
Anticipated Timeline

- **Oct. 2008**
 - Phase I EE/CA submitted to USEPA

- **Phase I Action Memo issued by USEPA (Anticipated)**

- **Phase I Design (Anticipated)**

- **Sept. 2008**
 - Phase I EE/CA Work Plan Finalized

- **USEPA review and Public comment on Phase I EE/CA (Anticipated)**

- **Phase II EE/CA Work Plan submitted to EPA (Anticipated)**

- **2009**

- **2010**

- **2011**

- **Phase I Work (Anticipated)**
General Scope of Phase II Removal Action

Per 2008 AOC:

- Remove 123,000 m³ of sediment from Phase II Work Area
- Remove sediment to 3.7 m below sediment surface
- Work to be contained by a sheet pile enclosure
- Sediment to be sent to a Confined Disposal Facility
- Phase II will undergo duplicate process as Phase I
- Will overlap Phase I

• CDF will have to be sited/designed
Regional View

Newark Bay
Confined Disposal Facility
Process Options

Nearshore Confined Disposal

CDF Capping

Dredging and CDF Filling
Confined Disposal Facility
Process Options
Imagine the result
Lower Passaic River Sediment Removal Project
Phase I Technology Screening

<table>
<thead>
<tr>
<th>Containment and Shoreline Stability</th>
<th>Sediment Removal</th>
<th>Sediment Processing</th>
<th>Water Treatment and Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel sheet pile wall</td>
<td>Mechanical</td>
<td>Solids separation</td>
<td>Discharge to public sewer system</td>
</tr>
<tr>
<td>Removal in the wet</td>
<td>Hydraulic</td>
<td>Grizzly</td>
<td>On-site treatment/ Discharge to Passaic</td>
</tr>
<tr>
<td>Removal in the dry</td>
<td>High solids pump</td>
<td>Hydrocyclone</td>
<td>Sand Filter</td>
</tr>
<tr>
<td></td>
<td>Caisson dredging</td>
<td></td>
<td>Granular Activated Carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sediment dewatering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geotextile Tubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravity</td>
<td></td>
</tr>
</tbody>
</table>

Anticipated debris: timber piles, woody debris, metal objects

Water Treatment and Discharge:
- Discharge to public sewer system
- On-site treatment/ Discharge to Passaic
 - Sand Filter
 - Granular Activated Carbon

Processing:
- Solids separation
- Grizzly
- Hydrocyclone

Sediment dewatering:
- Geotextile Tubes
- Mechanical
- Gravity

Mechanical:
- Steel sheet pile wall
- Removal in the wet
- Removal in the dry

Hydraulic:
- High solids pump
- Caisson dredging

Sediment dewatering:
- Geotextile Tubes
- Mechanical
- Gravity
Lower Passaic River Sediment Removal Project
Phase I Technology Screening

<table>
<thead>
<tr>
<th>Off-site Transport of Sediment</th>
<th>Sediment Treatment and Disposal</th>
<th>Backfilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck transport</td>
<td>Contaminant Reduction Technologies</td>
<td>Must consider:</td>
</tr>
<tr>
<td>Rail transport</td>
<td>Corrective action management units</td>
<td>Sediment geotechnical and hydrogeological properties</td>
</tr>
<tr>
<td>Barge transport</td>
<td>Landfills (Subtitle C)</td>
<td>River hydrodynamics</td>
</tr>
<tr>
<td></td>
<td>Incineration + landfills (Subtitle C/D)</td>
<td>Habitat restoration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase II Activities and schedule</td>
</tr>
</tbody>
</table>

Backfilling

- Must consider:
 - Sediment geotechnical and hydrogeological properties
 - River hydrodynamics
 - Habitat restoration
 - Phase II Activities and schedule

ARCADIS
Technology Screening
Specialty Technologies
Potentially Applicable to All Alternatives

• Caisson dredge
 – Involves sediment removal and backfilling within a caisson.
 – Specialty dredge for near bulkheads.

• Contaminant Reduction Technologies
 – Reduce contamination prior to transport off site
Summary of Technology Screening

<table>
<thead>
<tr>
<th>Technology Screening Group</th>
<th>Process Options</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment and Shoreline Stability</td>
<td>removal in the dry</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>removal in the wet</td>
<td>X X X X</td>
</tr>
<tr>
<td>Sediment Removal</td>
<td>mechanical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hydraulic</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>high solids pump</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>caisson</td>
<td></td>
</tr>
<tr>
<td>Sediment Processing</td>
<td>solids separation</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td>geotextile tubes</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>mechanical dewatering</td>
<td>X X X</td>
</tr>
<tr>
<td></td>
<td>gravity dewatering and amendment</td>
<td></td>
</tr>
<tr>
<td>Water Treatment and Discharge</td>
<td>on site water treatment plant</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td>POTW</td>
<td>X</td>
</tr>
<tr>
<td>Off Site Transport of Sediment</td>
<td>truck</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td>rail</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td>barge</td>
<td>X X X X</td>
</tr>
<tr>
<td>Off Site Treatment and Disposal</td>
<td>CAMU</td>
<td>X X X</td>
</tr>
<tr>
<td></td>
<td>direct disposal in a Subtitle C landfill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>incineration and disposal in Subtitle C and D landfills</td>
<td>X X X X</td>
</tr>
<tr>
<td>Backfilling</td>
<td>backfilling</td>
<td>X X X</td>
</tr>
</tbody>
</table>
Phase I Removal Action Objectives

- **Remove most concentrated 2,3,7,8-TCDD sediment** as well as other hazardous substances, to minimize the possibility of migration due to extreme weather events.
- **Prevent resuspension of sediment** to the extent practicable during removal operations.
- **Prevent potential for spillage or leakage** to the extent practicable during transport to the disposal facility.
- **Restore habitat**
Technical Challenges of Phase I Work Area